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DISTRIBUTED SHARED MEMORY
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18.6 Summary

 

This chapter describes distributed shared memory (DSM), an abstraction used for sharing
data between processes in computers that do not share physical memory. The motivation
for DSM is that it allows a shared memory programming model to be employed, which
has some advantages over message-based models. For example, programmers do not
have to marshal data items in DSM.

A central problem in implementing DSM is how to achieve good performance that
is retained as systems scale to large numbers of computers. Accesses to DSM involve
potential underlying network communication. Processes competing for the same or
neighbouring data items may cause large amounts of communication to occur. The
amount of communication is strongly related to the consistency model of a DSM – the
model that determines which of possibly many written values will be returned when a
process reads from a DSM location. 

The chapter discusses DSM design issues such as the consistency model and
implementation issues such as whether copies of the same data item are invalidated or
updated when one copy is written. It goes on to discuss invalidation protocols in more
detail. Finally, it describes release consistency – a relatively weak consistency model that
is adequate for many purposes and relatively cheap to implement.
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18.1 Introduction

 

Distributed shared memory (DSM) is an abstraction used for sharing data between
computers that do not share physical memory. Processes access DSM by reads and
updates to what appears to be ordinary memory within their address space. However, an
underlying runtime system ensures transparently that processes executing at different
computers observe the updates made by one another. It is as though the processes access
a single shared memory, but in fact the physical memory is distributed (see Figure 18.1).

The main point of DSM is that it spares the programmer the concerns of message
passing when writing applications that might otherwise have to use it. DSM is primarily
a tool for parallel applications or for any distributed application or group of applications
in which individual shared data items can be accessed directly. DSM is in general less
appropriate in client-server systems, where clients normally view server-held resources
as abstract data and access them by request (for reasons of modularity and protection).
However, servers can provide DSM that is shared between clients. For example,
memory-mapped files that are shared and for which some degree of consistency is
maintained are a form of DSM. (Mapped files were introduced with the MULTICS
operating system [Organick 1972].)

Message passing cannot be avoided altogether in a distributed system: in the
absence of physically shared memory, the DSM runtime support has to send updates in
messages between computers. DSM systems manage replicated data: each computer has
a local copy of recently accessed data items stored in DSM, for speed of access. The
problems of implementing DSM are related to those discussed in Chapter 15, as well as
those of caching shared files discussed in Chapter 8.

One of the first notable examples of a DSM implementation was the Apollo
Domain file system [Leach 

 

et al

 

. 1983], in which processes hosted by different
workstations share files by mapping them simultaneously into their address spaces. This
example shows that distributed shared memory can be persistent. That is, it may outlast
the execution of any process or group of processes that accesses it and be shared by
different groups of processes over time.

Figure 18.1 The distributed shared memory abstraction
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The significance of DSM first grew alongside the development of shared-memory
multiprocessors (see Section 6.3). Much research has gone into investigating algorithms
suitable for parallel computation on these multiprocessors. At the hardware architectural
level, developments include both caching strategies and fast processor-memory inter-
connections, aimed at maximizing the number of processors that can be sustained while
achieving fast memory access latency and throughput [Dubois 

 

et al

 

. 1988]. Where
processes are connected to memory modules over a common bus, the practical limit is
in the order of 10 processors before performance degrades drastically due to bus conten-
tion. Processors sharing memory are commonly constructed in groups of four, sharing a
memory module over a bus on a single circuit board. Multiprocessors with up to 64
processors in total are constructed from such boards in a 

 

Non-Uniform Memory Access

 

(

 

NUMA

 

) architecture. This is a hierarchical architecture in which the four-processor
boards are connected using a high-performance switch or higher-level bus. In a NUMA
architecture, processors see a single address space containing all the memory of all the
boards. But the access latency for on-board memory is less than that for a memory
module on a different board – hence the name of this architecture.

In 

 

distributed memory multiprocessors

 

 and clusters of off-the-shelf computing
components (see Section 6.3), the processors do not share memory but are connected by
a very high-speed network. These systems, like general-purpose distributed systems,
can scale to much greater numbers of processors than a shared-memory
multiprocessor’s 64 or so. A central question that has been pursued by the DSM and
multiprocessor research communities is whether the investment in knowledge of shared
memory algorithms and the associated software can be directly transferred to a more
scalable distributed memory architecture. 

 

18.1.1 Message passing versus DSM

 

As a communication mechanism, DSM is comparable with message passing rather than
with request-reply-based communication, since its application to parallel processing, in
particular, entails the use of asynchronous communication. The DSM and message
passing approaches to programming can be contrasted as follows:

 

Programming model

 

:

 

  

 

Under the message passing model, variables have to be
marshalled from one process, transmitted and unmarshalled into other variables at the
receiving process. By contrast, with shared memory the processes involved share
variables directly, so no marshalling is necessary – even of pointers to shared
variables – and thus no separate communication operations are necessary. Most
implementations allow variables stored in DSM to be named and accessed similarly
to ordinary unshared variables. In favour of message passing, on the other hand, is
that it allows processes to communicate while being protected from one another by
having private address spaces, whereas processes sharing DSM can, for example,
cause one another to fail by erroneously altering data. Furthermore, when message
passing is used between heterogeneous computers, marshalling takes care of
differences in data representation; but how can memory be shared between
computers with, for example, different integer representations?

Synchronization between processes is achieved in the message model through
message passing primitives themselves, using techniques such as the lock server
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implementation discussed in Chapter 13. In the case of DSM, synchronization is via
normal constructs for shared-memory programming such as locks and semaphores
(although these require different implementations in the distributed memory
environment). Chapter 6 briefly discussed such synchronization objects in the
context of programming with threads.

Finally, since DSM can be made persistent, processes communicating via DSM
may execute with non-overlapping lifetimes. A process can leave data in an agreed
memory location for the other to examine when it runs. By contrast, processes
communicating via message passing must execute at the same time.

 

Efficiency

 

:

 

  

 

Experiments show that certain parallel programs developed for DSM can
be made to perform about as well as functionally equivalent programs written for
message passing platforms on the same hardware [Carter 

 

et al

 

. 1991] – at least in the
case of relatively small numbers of computers (ten or so). However, this result cannot
be generalized. The performance of a program based on DSM depends upon many
factors, as we shall discuss below – particularly the pattern of data sharing (such as
whether an item is updated by several processes). 

There is a difference in the visibility of costs associated with the two types of
programming. In message passing, all remote data accesses are explicit and therefore
the programmer is always aware of whether a particular operation is in-process or
involves the expense of communication. Using DSM, however, any particular read
or update may or may not involve communication by the underlying runtime support.
Whether it does or not depends upon such factors as whether the data have been
accessed before and the sharing pattern between processes at different computers.

There is no definitive answer as to whether DSM is preferable to message passing for
any particular application. DSM is a promising tool whose ultimate status depends upon
the efficiency with which it can be implemented.

 

18.1.2 Implementation approaches to DSM

 

Distributed shared memory is implemented using one or a combination of specialized
hardware, conventional paged virtual memory or middleware:

 

Hardware

 

:

 

  

 

Shared-memory multiprocessor architectures based on a NUMA
architecture (for example, Dash [Lenoski 

 

et al

 

. 1992] and PLUS [Bisiani and
Ravishankar 1990]) rely on specialized hardware to provide the processors with a
consistent view of shared memory. They handle memory LOAD and STORE
instructions by communicating with remote memory and cache modules as necessary
to store and retrieve data. This communication is over a high-speed interconnection
which is analogous to a network. The prototype Dash multiprocessor has 64 nodes
connected in a NUMA architecture.

 

Paged virtual memory

 

:

 

  

 

Many systems, including Ivy [Li and Hudak 1989], Munin
[Carter 

 

et al

 

. 1991], Mirage [Fleisch and Popek 1989], Clouds [Dasgupta 

 

et al

 

. 1991]
(see www.cdk4.net/oss), Choices [Sane 

 

et al

 

. 1990], COOL [Lea 

 

et al

 

. 1993] and
Mether [Minnich and Farber 1989], implement DSM as a region of virtual memory
occupying the same address range in the address space of every participating process.
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This type of implementation is normally only suited to a collection of homogeneous
computers, with common data and paging formats.

 

Middleware

 

:

 

  

 

Some languages such as Orca [Bal 

 

et al

 

. 1990], and middleware such
as Linda [Carriero and Gelernter 1989] and its derivatives JavaSpaces [Bishop and
Warren 2003] and TSpaces [Wyckoff 

 

et al.

 

 1998], support forms of DSM without
any hardware or paging support, in a platform-neutral way. In this type of
implementation, sharing is implemented by communication between instances of the
user-level support layer in clients and servers. Processes make calls to this layer when
they access data items in DSM. The instances of this layer at the different computers
access local data items and communicate as necessary to maintain consistency.

This chapter concentrates on the use of software to implement DSM on standard
computers. Even with hardware support, high-level software techniques may be used to
minimize the amount of communication between components of a DSM
implementation. 

Figure 18.2 Mether system program

#include "world.h" 
struct shared { int a, b; };

Program Writer:
main()
{

struct shared *p;
methersetup(); /* Initialize the Mether runtime */
p = (struct shared *)METHERBASE;

/* overlay structure on METHER segment */
p->a = p->b = 0; /* initialize fields to zero */
while(TRUE){ /* continuously update structure fields */

p –>a = p –>a + 1;
p –>b = p –>b - 1;

}
}

Program Reader:
main()
{

struct shared *p;
methersetup();
p = (struct shared *)METHERBASE;
while(TRUE){ /* read the fields once every second */

printf("a = %d, b = %d\n", p –>a, p –>b);
sleep(1);

}
}
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The page-based approach has the advantage of imposing no particular structure on
the DSM, which appears as a sequence of bytes. In principle, it enables programs
designed for a shared-memory multiprocessor to run on computers without shared
memory, with little or no adaptation. Microkernels such as Mach and Chorus provide
native support for DSM (and other memory abstractions – the Mach virtual memory
facilities are described in www.cdk4.net/mach). Page-based DSM is more usually
implemented largely at user level to take advantage of the flexibility that that provides.
The implementation utilizes kernel support for user-level page fault handlers. UNIX and
some variants of Windows provide this facility. Microprocessors with 64-bit address
spaces widen the scope for page-based DSM by relaxing constraints on address space
management [Bartoli 

 

et al

 

. 1993].
The example in Figure 18.2 is of two C programs, 

 

Reader

 

 and 

 

Writer

 

, which
communicate via the page-based DSM provided by the Mether system [Minnich and
Farber 1989]. 

 

Writer

 

 updates two fields in a structure overlaid upon the beginning of the
Mether DSM segment (beginning at address 

 

METHERBASE

 

) and 

 

Reader

 

 periodically
prints out the values it reads from these fields.

The two programs contain no special operations; they are compiled into machine
instructions that access a common range of virtual memory addresses (starting at

 

METHERBASE

 

). Mether ran over conventional Sun workstation and network hardware.
The middleware approach is quite different to the use of specialized hardware and

paging in that it is not intended to utilize existing shared-memory code. Its significance
is that it enables us to develop higher-level abstractions of shared objects, rather than
shared memory locations.

 

18.2 Design and implementation issues

 

This section discusses design and implementation options concerning the main features
that characterize a DSM system. These are the structure of data held in DSM; the
synchronization model used to access DSM consistently at the application level; the
DSM consistency model, which governs the consistency of data values accessed from
different computers; the update options for communicating written values between
computers; the granularity of sharing in a DSM implementation; and the problem of
thrashing.

 

18.2.1 Structure

 

In Chapter 15, we considered systems that replicate a collection of objects such as
diaries and files. Those systems enable client programs to perform operations upon the
objects as though there was only one copy of each object, but in reality they may be
accessing different physical replicas. The systems make guarantees about the extent to
which the replicas of the objects are allowed to diverge.

A DSM system is just such a replication system. Each application process is
presented with some abstraction of a collection of objects, but in this case the
‘collection’ looks more or less like memory. That is, the objects can be addressed in
some fashion or other. Different approaches to DSM vary in what they consider to be an
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‘object’ and in how objects are addressed. We consider three approaches, which view
DSM as being composed respectively of contiguous bytes, language-level objects or
immutable data items.

 

Byte-oriented 

 

◊

 

  

 

This type of DSM is accessed as ordinary virtual memory – a
contiguous array of bytes. It is the view illustrated above by the Mether system. It is also
the view of many other DSM systems, including Ivy, which we discuss in  Section 18.3.
It allows applications (and language implementations) to impose whatever data
structures they want on the shared memory. The shared objects are directly addressible
memory locations (in practice, the shared locations may be multi-byte words rather than
individual bytes). The only operations upon those objects are 

 

read

 

 (or LOAD) and 

 

write

 

(or STORE). If 

 

x

 

 and 

 

y

 

 are two memory locations, then we denote instances of these
operations as follows:

 – a 

 

read

 

 operation that reads the value 

 

a

 

 from location 

 

x.

 

 – a 

 

write

 

 operation that stores value 

 

b

 

 at location 

 

x

 

.

An example execution is , . This process writes the value 1 to location 

 

x

 

and then reads the value 2 from it. Some other process must have written the value 2 to
that location meanwhile.

 

Object-oriented 

 

◊

 

  

 

 The shared memory is structured as a collection of language-level
objects with higher-level semantics than simple 

 

read

 

/

 

write

 

 variables, such as stacks and
dictionaries. The contents of the shared memory are changed only by invocations upon
these objects and never by direct access to their member variables. An advantage of
viewing memory in this way is that object semantics can be utilized when enforcing
consistency. Orca views DSM as a collection of shared objects and automatically
serializes operations upon any given object.

 

Immutable data 

 

◊

 

  

 

Here DSM is viewed as a collection of immutable data items that
processes can read, add to and remove from. Examples include Agora [Bisiani and Forin
1988] and, more significantly, Linda and its derivatives, TSpaces and JavaSpaces.

Linda-type systems provide the programmer with collections of tuples called a

 

tuple space

 

 (see Section 16.3.1). Tuples consist of a sequence of one or more typed data
fields such as <“fred”, 1958>, <“sid”, 1964> and <4, 9.8, “Yes”>. Any combination of
types of tuples may exist in the same tuple space. Processes share data by accessing the
same tuple space: they place tuples in tuple space using the 

 

write

 

 operation and read or
extract them from tuple space using the 

 

read

 

 or 

 

take

 

 operation. The 

 

write

 

 operation adds
a tuple without affecting existing tuples in the space. The 

 

read

 

 operation returns the
value of one tuple without affecting the contents of the tuple space. The 

 

take

 

 operation
also returns a tuple, but in this case it also removes the tuple from the tuple space.

When reading or taking a tuple from tuple space, a process provides a tuple
specification and the tuple space returns any tuple that matches that specification – this
is a type of associative addressing. To enable processes to synchronize their activities,
the 

 

read

 

 and 

 

take

 

 operations both block until there is a matching tuple in the tuple space.
A tuple specification includes the number of fields and the required values or types of
the fields. For example, 

 

take

 

(<String, integer>) could extract either <“fred”, 1958> or
<“sid”, 1964>; 

 

take

 

(<String, 1958>) would extract only <“fred”, 1958> of those two. 
In Linda, no direct access to tuples in tuple space is allowed and processes have

to replace tuples in the tuple space instead of modifying them. Suppose, for example,

R x( )a
W x( )b

W x( )1 R x( )2

 

Chapter 18 DSM.fm  Page 755  Thursday, March 17, 2005  2:37 PM



 

756

 

CHAPTER 18  DISTRIBUTED SHARED MEMORY

 

that a set of processes maintains a shared counter in tuple space. The current count (say
64) is in the tuple <“counter”, 64>. A process must execute code of the following form
in order to increment the counter in a tuple space 

 

myTS

 

:

 

<s, count>

 

 :

 

= myTS.take

 

(

 

<“counter”, integer>

 

);

 

myTS.write

 

(

 

<“counter”, count+1>

 

);

The reader should check that race conditions cannot arise, because 

 

take

 

 extracts the
counter tuple from tuple space. 

 

18.2.2 Synchronization model

 

Many applications apply constraints concerning the values stored in shared memory.
This is as true of applications based on DSM as it is of applications written for shared-
memory multiprocessors (or indeed for any concurrent programs that share data, such
as operating system kernels and multi-threaded servers). For example, if 

 

a

 

 and 

 

b

 

 are two
variables stored in DSM, then a constraint might be that 

 

a

 

 = 

 

b

 

 always. If two or more
processes execute the following code:

 

a

 

 := a + 1;
b := b + 1;

then an inconsistency may arise. Suppose a and b are initially zero and that process 1
gets as far as setting a to 1. Before it can increment b, process 2 sets a to 2 and b to 1.
The constraint has been broken. The solution is to make this code fragment into a critical
section: to synchronize processes to ensure that only one may execute it at a time.

In order to use DSM, then, a distributed synchronization service needs to be
provided, which includes familiar constructs such as locks and semaphores. Even when
DSM is structured as a set of objects, the implementors of the objects have to be
concerned with synchronization. Synchronization constructs are implemented using
message passing (see Chapter 13 for a description of a lock server). Special machine
instructions such as testAndSet, which are used for synchronization in shared-memory
multiprocessors, are applicable to page-based DSM, but their operation in the
distributed case may be very inefficient. DSM implementations take advantage of
application-level synchronization to reduce the amount of update transmission. The
DSM then includes synchronization as an integrated component.

18.2.3 Consistency model

As we described in Chapter 15, the issue of consistency arises for a system such as DSM,
which replicates the contents of shared memory by caching it at separate computers. In
the terminology of Chapter 15, each process has a local replica manager, which holds
cached replicas of objects. In most implementations, data is read from local replicas for
efficiency, but updates have to be propagated to the other replica managers. 

The local replica manager is implemented by a combination of middleware (the
DSM runtime layer in each process) and the kernel. It is usual for middleware to perform
the majority of DSM processing. Even in a page-based DSM implementation, the kernel
usually provides only basic page mapping, page-fault handling and communication
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mechanisms and middleware is responsible for implementing the page-sharing policies.
If DSM segments are persistent, then one or more storage servers (for example, file
servers) will also act as replica managers.

In addition to caching, a DSM implementation may buffer updates and thus
amortize communication costs by spreading them over multiple updates. We saw a
similar approach to amortizing communication costs in the gossip architecture of
Chapter 15.

A memory consistency model [Mosberger 1993] specifies the consistency
guarantees that a DSM system makes about the values that processes read from objects,
given that they actually access a replica of each object and that multiple processes may
update the objects. Note that this is different from the higher-level, application-specific
notion of consistency discussed under the heading of application synchronization above. 

Cheriton [1985] describes how forms of DSM can be envisaged for which a
considerable degree of inconsistency is acceptable. For example, DSM might be used to
store the loads of computers on a network in order that clients can select the least-loaded
computers for running applications. Since such information is by its nature liable to
become inaccurate on relatively small timescales, it would be a waste of effort to keep
it consistent at all times for all computers in the system.

Most applications do, however, have stronger consistency requirements. Care
must be taken to give programmers a model that conforms to reasonable expectations of
the way memory should behave. Before describing memory consistency requirements
in more detail, it is helpful first to look at an example. 

Consider an application in which two processes access two variables, a and b
(Figure 18.3), which are initialized to zero. Process 2 increments a and b, in that order.
Process 1 reads the values of b and a into local variables br and ar, in that order. Note
that there is no application-level synchronization. Intuitively, process 1 should expect to
see one of the following combinations of values, depending upon the points at which the
read operations applied to a and b (implied in the statements br := b and ar := a) occur
with respect to process 2’s execution: ar = 0, br = 0; ar = 1, br = 0; ar = 1, br = 1. In
other words, the condition ar ≥ br should always be satisfied and process 1 should print
‘OK’. However, a DSM implementation might deliver the updates to a and b out of
order to the replica manager for process 1, in which case the combination ar = 0, br = 1
could occur.

Figure 18.3 Two processes accessing shared variables

a := a + 1;
b := b + 1;

br := b;
ar := a;
if(ar ≥ br) then
       print ("OK");

Process 1 Process 2
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The reader’s immediate reaction to the example just given is probably that the
DSM implementation, which reverses the order of two updates, is incorrect. If process
1 and process 2 execute together at a single-processor computer, we would assume that
the memory subsystem was malfunctioning. However, it may be a correct
implementation, in the distributed case, of a consistency model that is weaker than what
many of us would intuitively expect, but that nonetheless can be useful and is relatively
efficient.

Mosberger [1993] delineates a range of models that have been devised for shared-
memory multiprocessors and software DSM systems. The main consistency models that
can be practically realized in DSM implementations are sequential consistency and
models that are based on weak consistency.

The central question to be asked in order to characterize a particular memory
consistency model is this: when a read access is made to a memory location, which write
accesses to the location are candidates whose values could be supplied to the read? At
the weakest extreme, the answer is: any write that was issued before the read. This model
would be obtained if replica managers could delay propagating updates to their peers
indefinitely. It is too weak to be useful.

At the strongest extreme, all written values are instantaneously available to all
processes: a read returns the most recent write at the time that the read takes place. This
definition is problematic in two respects. First, neither writes nor reads take place at a
single point in time, so the meaning of ‘most recent’ is not always clear. Each type of
access has a well-defined point of issue, but they complete at some later time (for
example, after message passing has taken place). Second, Chapter 11 showed that there
are limits to how closely clocks can be synchronized in a distributed system. So it is not
always possible to determine accurately whether one event occurred before another.

Nonetheless, this model has been specified and studied. The reader may already
have recognized it: it is what we called linearizability in Chapter 15. Linearizability is
more usually called atomic consistency in the DSM literature. We now restate the
definition of linearizability from Chapter 15.

 A replicated shared object service is said to be linearizable if for any execution
there is some interleaving of the series of operations issued by all the clients that satisfies
the following two criteria:

L1: The interleaved sequence of operations meets the specification of a (single)
correct copy of the objects. 

L2: The order of operations in the interleaving is consistent with the real times at
which the operations occurred in the actual execution.

This definition is a general one that applies to any system containing shared replicated
objects. We can be more specific now, since we know that we are dealing with a shared
memory. Consider the simple case where the shared memory is structured as a set of
variables that may be read or written. The operations are all reads and writes, which we
introduced a notation for in Section 18.2.1: a read of value a from variable x is denoted

; a write of value b to variable x is denoted . We can now express the first
criterion L1 in terms of variables (the shared objects) as follows:

L1': The interleaved sequence of operations is such that if  occurs in the
sequence, then either the last write operation that occurs before it in the

R x( )a W x( )b

R x( )a
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interleaved sequence is , or no write operation occurs before it and a is
the initial value of x. 

This criterion states our intuition that a variable can only be changed by a write
operation. The second criterion for linearizability, L2, remains the same. 

Sequential consistency ◊  Linearizability is too strict for most practical purposes. The
strongest memory model for DSM that is used in practice is sequential consistency
[Lamport 1979], which we introduced in Chapter 15. We adapt Chapter 15’s definition
for the particular case of shared variables as follows. 

A DSM system is said to be sequentially consistent if for any execution there is
some interleaving of the series of operations issued by all the processes that satisfies the
following two criteria:

SC1: The interleaved sequence of operations is such that if  occurs in the
sequence, then either the last write operation that occurs before it in the
interleaved sequence is , or no write operation occurs before it and a is
the initial value of x. 

SC2: The order of operations in the interleaving is consistent with the program order
in which each individual client executed them.

Criterion SC1 is the same as L1'. Criterion SC2 refers to program order rather than
temporal order, which is what makes it possible to implement sequential consistency. 

The condition can be restated as follows: there is a virtual interleaving of all the
processes’ read and write operations against a single virtual image of the memory; the
program order of every individual process is preserved in this interleaving and each
process always reads the latest value written within the interleaving. 

In an actual execution, memory operations may be overlapped and some updates
may be ordered differently at different processes, as long as the definition’s constraints
are not thereby broken. Note that memory operations upon the entire DSM have to be
taken into account to satisfy the conditions of sequential consistency – and not just the
operations on each individual location. 

The combination ar = 0, br = 1 in the above example could not occur under
sequential consistency, because process 1 would be reading values that conflict with
process 2’s program order. An example interleaving of the processes’ memory accesses
in a sequentially consistent execution is shown in Figure 18.4. Once more, while this
shows an actual interleaving of the read and write operations, the definition only
stipulates that the execution should take place as though such a strict interleaving takes
place. 

Sequentially consistent DSM could be implemented by using a single server to
hold all the shared data and by making all processes perform reads or writes by sending
requests to the server, which globally orders them. This architecture is too inefficient for
a DSM implementation and practical means of achieving sequential consistency are
described below. Nonetheless, it remains a costly model to implement.

Coherence ◊  One reaction to the cost of sequential consistency is to settle for a weaker
model with well-defined properties. Coherence is an example of a weaker form of
consistency. Under coherence, every process agrees on the order of write operations to
the same location, but they do not necessarily agree on the ordering of write operations

W x( )a

R x( )a

W x( )a
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to different locations. We can think of coherence as sequential consistency on a location-
by-location basis. Coherent DSM can be implemented by taking a protocol for
implementing sequential consistency and applying it separately to each unit of
replicated data – for example, each page. The saving comes from the fact that accesses
to two different pages are independent and need not delay one another, since the
protocol is applied separately to them.

Weak consistency ◊  Dubois et al. [1988] developed the weak consistency model in an
attempt to avoid the costs of sequential consistency on multiprocessors, while retaining
the effect of sequential consistency. This model exploits knowledge of synchronization
operations in order to relax memory consistency, while appearing to the programmer to
implement sequential consistency (at least, under certain conditions that are beyond the
scope of this book). For example, if the programmer uses a lock to implement a critical
section, then a DSM system can assume that no other process may access the data items
accessed under mutual exclusion within it. It is therefore redundant for the DSM system
to propagate updates to these items until the process leaves the critical section. While
items are left with ‘inconsistent’ values some of the time, they are not accessed at those
points; the execution appears to be sequentially consistent. Adve and Hill [1990]
describe a generalization of this notion called weak ordering: ‘(A DSM system) is
weakly ordered with respect to a synchronization model if and only if it appears
sequentially consistent to all software that obeys the synchronization model.’ Release
consistency, which is a development of weak consistency, is described in Section 18.4.

18.2.4 Update options

Two main implementation choices have been devised for propagating updates made by
one process to the others: write-update and write-invalidate. These are applicable to a
variety of DSM consistency models, including sequential consistency. In outline, the
options are as follows:

Write-update:  The updates made by a process are made locally and multicast to all
other replica managers possessing a copy of the data item, which immediately modify
the data read by local processes (Figure 18.5). Processes read the local copies of data
items, without the need for communication. In addition to allowing multiple readers,

Figure 18.4 Interleaving under sequential consistency
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several processes may write the same data item at the same time; this is known as
multiple-reader/multiple-writer sharing. 

The memory consistency model that is implemented with write-update
depends on several factors, mainly the multicast ordering property. Sequential
consistency can be achieved by using multicasts that are totally ordered (see Chapter
12 for a definition of totally ordered multicast), which do not return until the update
message has been delivered locally. All processes then agree on the order of updates.
The set of reads that take place between any two consecutive updates is well defined
and their ordering is immaterial to sequential consistency.

Reads are cheap in the write-update option. However, Chapter 12 showed that
ordered multicast protocols are relatively expensive to implement in software. Orca
uses write-update and employs the Amoeba multicast protocol [Kaashoek and
Tanenbaum 1991] (see www.cdk4.net/coordination), which uses hardware support
for multicast. Munin supports write-update as an option. A write-update protocol is
used with specialized hardware support in the PLUS multiprocessor architecture.

Write-invalidate:  This is commonly implemented in the form of multiple-reader/
single-writer sharing. At any time, a data item may either be accessed in read-only
mode by one or more processes, or it may be read and written by a single process. An
item that is currently accessed in read-only mode can be copied indefinitely to other
processes. When a process attempts to write to it, a multicast message is first sent to
all other copies to invalidate them and this is acknowledged before the write can take
place; the other processes are thereby prevented from reading stale data (that is, data
that are not up to date). Any processes attempting to access the data item are blocked
if a writer exists. Eventually, control is transferred from the writing process, and

Figure 18.5 DSM using write-update
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other accesses may take place once the update has been sent. The effect is to process
all accesses to the item on a first-come, first-served basis. By the proof given by
Lamport [1979], this scheme achieves sequential consistency. We shall see in
Section 18.4 that invalidations may be delayed under release consistency.

Under the invalidation scheme, updates are only propagated when data are read
and several updates can take place before communication is necessary. Against this
must be placed the cost of invalidating read-only copies before a write can occur. In
the multiple-reader/single-writer scheme described, this is potentially expensive. But
if the read/write ratio is sufficiently high, then the parallelism obtained by allowing
multiple simultaneous readers offsets this cost. Where the read/write ratio is
relatively small, a single-reader/single-writer scheme can be more appropriate: that
is, one in which at most one process may be granted read-only access at a time. 

18.2.5 Granularity

An issue that is related to the structure of DSM is the granularity of sharing.
Conceptually, all processes share the entire contents of a DSM. As programs sharing
DSM execute, however, only certain parts of the data are actually shared and then only
for certain times during the execution. It would clearly be very wasteful for the DSM
implementation always to transmit the entire contents of DSM as processes access and
update it. What should be the unit of sharing in a DSM implementation? That is, when
a process has written to DSM, which data does the DSM runtime send in order to provide
consistent values elsewhere? 

We focus here on page-based implementations, although the granularity issue
does arise in other implementations (see Exercise 18.11). In a page-based DSM, the
hardware supports alterations to an address space efficiently in units of pages –
essentially by the placement of a new page frame pointer in the page table (see, for
example, Bacon [2002] for a description of paging). Page sizes can typically range up
to 8 kilobytes, so this is an appreciable amount of data that must be transmitted over a
network to keep remote copies consistent when an update occurs. By default, the price
of the whole page transfer must be paid whether the entire page has been updated, or just
one byte of it.

Using a smaller page size – 512 bytes or 1 kilobyte say – does not necessarily lead
to an improvement in overall performance. First, in cases where processes do update
large amounts of contiguous data, it is better to send one large page rather than several
smaller pages in separate updates, because of the fixed software overheads per network
packet. Second, using a small page as the unit of distribution leads to a large number of
units that must be administered separately by the DSM implementation.

To complicate matters further, processes tend to contend more for pages when the
page size is large, because the likelihood that the data they access will lie within the
same page increases with the page size. Consider, for example, two processes, one of
which accesses only data item A while the other accesses only data item B, which lie
within the same page (Figure 18.6). For the sake of concreteness, let us assume that one
process reads A and the other updates B. There is no contention at the application level.
However, the entire page must be transmitted between the processes, since the DSM
runtime does not by default know which locations in the page have been altered. This
phenomenon is known as false sharing: two or more processes share parts of a page, but

Chapter 18 DSM.fm  Page 762  Thursday, March 17, 2005  2:37 PM



SECTION 18.3 SEQUENTIAL CONSISTENCY AND IVY CASE STUDY 763

only one in fact accesses each part. In write-invalidate protocols, false sharing can lead
to unnecessary invalidations. In write-update protocols, when several writers falsely
share data items they may cause them to be overwritten with older versions.

 In practice, the choice of the unit of sharing has to be made based on the physical
page sizes available, although a unit of several contiguous pages may be taken if the
page size is small. The layout of data with respect to page boundaries is an important
factor in determining the number of page transfers made when a program executes.

18.2.6 Thrashing

A potential problem with write-invalidate protocols is thrashing. Thrashing is said to
occur where the DSM runtime spends an inordinate amount of time invalidating and
transferring shared data compared with the time spent by application processes doing
useful work. It occurs when several processes compete for the same data item, or for
falsely shared data items. If, for example, one process repeatedly reads a data item that
another is regularly updating, then this item will be constantly transferred from the
writer and invalidated at the reader. This is an example of a sharing pattern for which
write-invalidate is inappropriate and write-update would be better. The next section
describes the Mirage approach to thrashing, in which computers ‘own’ pages for a
minimum period; Section 18.4 describes how Munin allows the programmer to declare
access patterns to the DSM system so that it can choose appropriate update options for
each data item and avoid thrashing.

18.3 Sequential consistency and Ivy case study

This section describes methods for implementing sequentially consistent, page-based
DSM. It draws upon Ivy [Li and Hudak 1989] as a case study. 

18.3.1 The system model

The basic model to be considered is one in which a collection of processes shares a
segment of DSM (Figure 18.7). The segment is mapped to the same range of addresses
in each process, so that meaningful pointer values can be stored in the segment. The
processes execute at computers equipped with a paged memory management unit. We
shall assume that there is only one process per computer that accesses the DSM segment.
There may in reality be several such processes at a computer. However, these could then
share DSM pages directly (the same page frame can be used in the page tables used by
the different processes). The only complication would be to coordinate fetching and

Figure 18.6 Data items laid out over pages
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propagating updates to a page when two or more local processes access it. This
description ignores such details.

Paging is transparent to the application components within processes; they can
logically both read and write any data in DSM. However, the DSM runtime restricts
page access permissions in order to maintain sequential consistency when processing
reads and writes. Paged memory management units allow the access permissions to a
data page to be set to none, read-only or read-write. If a process attempts to exceed the
current access permissions, then it takes a read or write page fault, according to the type
of access. The kernel redirects the page fault to a handler specified by the DSM runtime
layer in each process. The page fault handler – which runs transparently to the
application – processes the fault in a special way, to be described below, before
returning control to the application. In the original DSM systems such as Ivy, the kernel
itself performs much of the processing that we describe here. We shall speak of the
processes themselves performing page-fault handling and communication handling. In
actuality, some combination of the DSM runtime layer in the process and the kernel
performs these handling functions. Usually, the in-process DSM runtime contains the
most significant functionality in order than this can be reimplemented and fine-tuned
without the problems associated with altering a kernel. 

This description will ignore the page-fault processing that takes place as part of
the normal virtual memory implementation. Apart from the fact that DSM segments
compete with other segments for page frames, the implementations are independent.

The problem of write-update ◊  The previous section outlined the general
implementation alternatives of write-update and write-invalidation. In practice, if the
DSM is page-based, then write-update is used only if writes can be buffered. This is
because standard page-fault handling is unsuited to the task of processing every single
write update to a page.

To see this, suppose that every update has to be multicast to the remaining
replicas. Suppose that a page has been write-protected. When a process attempts to write
upon the page, it takes a page fault and a handler routine is called. This handler could,
in principle, examine the faulting instruction to determine the value and address being

Figure 18.7 System model for page-based DSM
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written and multicast the update before restoring write access and returning to complete
the faulting instruction.

But now that write access has been restored, subsequent updates to the page will
not cause a page fault. To make every write access produce a page fault, it would be
necessary for the page fault handler to set the process into TRACE mode, whereby the
processor generates a TRACE exception after each instruction. The TRACE exception
handler would turn off write permissions to the page and turn off TRACE mode once
more. The whole exercise would be repeated when a write fault next occurred. It is clear
that this method is liable to be very expensive. There would be many exceptions caused
during the execution of a process. 

In practice, write-update is used with page-based implementations, but only where
the page is left with write permissions after an initial page fault and several writes are
allowed to occur before the updated page is propagated. Munin uses this write-buffering
technique. As an extra efficiency measure, Munin tries to avoid propagating the whole
page – only a small part of which may have been updated. When a process first attempts
to write to the page, Munin handles the page fault by taking a copy of the page and
setting the copy aside before enabling write access. Later, when Munin is ready to
propagate the page, it compares the updated page with the copy that it took and encodes
the updates as a set of differences between the two pages. The differences often take up
much less space than an entire page. Other processes generate the updated page from the
pre-update copy and the set of differences.

18.3.2 Write invalidation

Invalidation-based algorithms use page protection to enforce consistent data sharing.
When a process is updating a page, it has read and write permissions locally; all other
processes have no access permissions to the page. When one or more processes are
reading the page, they have read-only permission; all other processes have no access
permissions (although they may acquire read permissions). No other combinations are
possible. A process with the most up-to-date version of a page p is designated as its
owner – referred to as owner(p). This is either the single writer, or one of the readers.
The set of processes that have a copy of a page p is called its copy set – referred to as
copyset(p).

The possible state transitions are shown in Figure 18.8. When a process 
attempts to write a page p to which it has no access or read-only access, a page fault takes
place. The page-fault handling procedure is as follows:

• The page is transferred to , if it does not already have an up-to-date read-only
copy.

• All other copies are invalidated: the page permissions are set to no access at all
members of copyset(p).

• copyset(p) := { }.

• owner(p) := .

• The DSM runtime layer in  places the page with read-write permissions at the
appropriate location in its address space and restarts the faulting instruction.

Pw

Pw

Pw

Pw

Pw
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Note that two or more processes with read-only copies may take write faults at more or
less the same time. A read-only copy of a page may be out-of-date when ownership is
eventually granted. To detect whether a current read-only copy of a page is out-of-date,
each page can be associated with a sequence number, which is incremented whenever
ownership is transferred. A process requiring write access encloses the sequence number
of its read-only copy, if it possesses one. The current owner can then tell whether the
page has been modified and therefore needs to be sent. This scheme is described by
Kessler and Livny [1989] as the ‘shrewd algorithm’.

When a process  attempts to read a page p for which it has no access
permissions, a read page fault takes place. The page-fault handling procedure is as
follows:

• The page is copied from owner(p) to .

• If the current owner is a single writer, then it remains as p’s owner and its access
permission for p is set to read-only access. Retaining read access is desirable in
case the process attempts to read the page subsequently – it will have retained an
up-to-date version of the page. However, as the owner it will have to process
subsequent requests for the page even if it does not access the page again. So it
might turn out to have been more appropriate to reduce permission to no access
and transfer ownership to .

• copyset(p) := copyset(p) ∪ { }.

• The DSM runtime layer in  places the page with read-only permissions at the
appropriate location in its address space and restarts the faulting instruction.

It is possible for a second page fault to occur during the transition algorithms just
described. In order that transitions take place consistently, any new request for the page
is not processed until after the current transition has completed.

The description just given has only explained what must be done. The problem of
how to implement page fault handling efficiently is now addressed

Figure 18.8 State transitions under write-invalidation
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18.3.3 Invalidation protocols

Two important problems remain to be addressed in a protocol to implement the
invalidation scheme:

1. How to locate owner(p) for a given page p.

2. Where to store copyset(p).

For Ivy, Li and Hudak [1989] describe several architectures and protocols that take
varying approaches to these problems. The simplest we shall describe is their improved
centralized manager algorithm. In it, a single server called a manager is used to store the
location (transport address) of owner(p) for every page p. The manager could be one of
the processes running the application, or it could be any other process. In this algorithm,
the set copyset(p) is stored at owner(p). That is, the identifiers and transport addresses
of the members of copyset(p) are stored.

As shown in Figure 18.9, when a page fault occurs the local process (which we
shall refer to as the client) sends a message to the manager containing the page number
and the type of access required (read or read-write). The client awaits a reply. The
manager handles the request by looking up the address of owner(p) and forwarding the
request to the owner. In the case of a write fault, the manager sets the new owner to be
the client. Subsequent requests are thus queued at the client until it has completed the
transfer of ownership to itself.

The previous owner sends the page to the client. In the case of a write fault, it also
sends the page’s copy set. The client performs the invalidation when it receives the copy
set. It sends a multicast request to the members of the copy set, awaiting
acknowledgement from all the processes concerned that invalidation has taken place.
The multicast need not be ordered. The former owner need not be included in the list of
destinations, since it invalidates itself. The details of copy set management are left to the
reader, who should consult the general invalidation algorithms given above.

Figure 18.9 Central manager and associated messages
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The manager is a performance bottleneck and a critical point of failure. Li and
Hudak suggested three alternatives that allow the load of page management to be
divided between computers: fixed distributed page management, multicast-based
distributed management and dynamic distributed management. In the first, multiple
managers are used, each functionally equivalent to the central manager just described,
but the pages are divided statically between them. For example, each manager could
manage just those pages whose page numbers hash to a certain range of values. Clients
calculate the hash number for the needed page and use a predetermined configuration
table to look up the address of the corresponding manager.

This scheme would ameliorate the problem of load in general, but it has the
disadvantage that a fixed mapping of pages to managers may not be suitable. When
processes do not access the pages equally, some managers will incur more load than
others. We now describe multicast-based and dynamic distributed management. 

Using multicast to locate the owner ◊  Multicast can be used to eliminate the manager
completely. When a process faults, it multicasts its page request to all the other
processes. Only the process that owns the page replies. Care must be taken to ensure
correct behaviour if two clients request the same page at more or less the same time:
each client must obtain the page eventually, even if its request is multicast during
transfer of ownership. 

Consider two clients C1 and C2, which use multicast to locate a page owned by O.
Suppose that O receives C1’s request first and transfers ownership to it. Before the page
arrives, C2’s request arrives at O and at C1. O will discard C2’s request because it no
longer owns the page. Li and Hudak pointed out that C1 should defer processing C2’s
request until after it has obtained the page – otherwise it would discard the request
because it is not the owner and C2’s request would be lost altogether. However, a
problem still remains. C1’s request has been queued at C2 meanwhile. After C1 has
eventually given C2 the page, C2 will receive and process C1’s request – which is now
obsolete!

One solution is to use totally ordered multicast, so that clients can safely discard
requests that arrive before their own (requests are delivered to themselves as well as to
other processes). Another solution, which uses a cheaper unordered multicast but which
consumes more bandwidth, is to associate each page with a vector timestamp, with one
entry per process (see Chapter 11 for a description of vector timestamps). When page
ownership is transferred, so is the timestamp. When a process obtains ownership, it
increments its entry in the timestamp. When a process requests ownership, it encloses
the last timestamp it held for the page. In our example, C2 could discard C1’s request,
because C1’s entry in the request’s timestamp is lower than that which arrived with the
page.

Whether an ordered multicast or unordered multicast is used, this scheme has the
usual disadvantage of multicast schemes: processes that are not the owners of a page are
interrupted by irrelevant messages, wasting processing time. 

18.3.4 A dynamic distributed manager algorithm

Li and Hudak suggested the dynamic distributed manager algorithm, which allows page
ownership to be transferred between processes but which uses an alternative to multicast
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as its method of locating a page’s owner. The idea is to divide the overheads of locating
pages between those computers that access them. Every process keeps, for every page
p, a hint as to the page’s current owner – the probable owner of p, or probOwner(p).
Initially, every process is supplied with accurate page locations. In general, however,
these values are hints, because pages can be transferred elsewhere at any time. As in
previous algorithms, ownership is transferred only when a write fault occurs. 

The owner of a page is located by following chains of hints that are set up as
ownership of the page is transferred from computer to computer. The length of the chain
– that is, the number of forwarding messages necessary to locate the owner – threatens
to increase indefinitely. The algorithm overcomes this by updating the hints as more up-
to-date values become available. Hints are updated and requests are forwarded as
follows:

• When a process transfers ownership of page p to another process, it updates
probOwner(p) to be the recipient.

• When a process handles an invalidation request for a page p, it updates
probOwner(p) to be the requester.

• When a process that has requested read access to a page p receives it, it updates
probOwner(p) to be the provider.

• When a process receives a request for a page p that it does not own, it forwards
the request to probOwner(p) and resets probOwner(p) to be the requester. 

The first three updates follow simply from the protocol for transferring page ownership
and providing read-only copies. The rationale for the update when forwarding requests
is that, for write requests, the requester will soon be the owner, even though it is not
currently. In fact, in Li and Hudak’s algorithm, assumed here, the probOwner update is
made whether the request is for read access or write access. We return to this point
shortly.

Figure 18.10 ((a) and (b)) illustrates probOwner pointers before and after process
A takes a write page fault. A’s probOwner pointer for the page initially points to B.
Processes B, C and D forward the request to E by following their own probOwner
pointers; thereafter, all are set to point to A as a result of the update rules just described.
The arrangement after fault handling is clearly better than that which preceded it: the
chain of pointers has collapsed. 

If, however, A takes a read fault, then process B is better off (two steps instead of
three to E), C’s situation is the same as it was before (two steps), but D is worse off, with
two steps instead of one (Figure 18.10(c)). Simulations are required to investigate the
overall effect of this tactic on performance.

The average length of pointer chains can further be controlled by periodically
broadcasting the current owner’s location to all processes. This has the effect of
collapsing all chains to length 1. 

Li and Hudak describe the results of simulations that they carried out to
investigate the efficacy of their pointer updates. With faulting processes chosen at
random, for 1024 processors they found that the average number of messages taken to
reach the owner of a page was 2.34 if broadcasts announcing the owner’s location are
made every 256 faults and 3.64 if broadcasts are made every 1024 faults. These figures
are given only as illustrations: a complete set of results is given by Li and Hudak [1989].
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Note that a DSM system that uses a central manager requires two messages to reach the
owner of a page.

Finally, Li and Hudak describe an optimization that potentially both makes
invalidation more efficient and reduces the number of messages required to handle a
read page fault. Instead of having to obtain a page copy from the owner of a page, a
client can obtain a copy from any process with a valid copy. There is a chance that a
client attempting to locate the owner will encounter such a process before the owner on
the pointer chain.

This is done with the proviso that processes keep a record of clients that have
obtained a copy of a page from them. The set of processes that possess read-only copies
of a page thus forms a tree rooted at the owner, with each node pointing to the child
nodes below, which obtained copies from it. The invalidation of a page begins at the

Figure 18.10 Updating probOwner pointers

(a) probOwner pointers just before process A takes a page fault for a page owned by E

(b) Write fault: probOwner pointers after A's write request is forwarded

(c) Read fault: probOwner pointers after A's read request is forwarded
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owner and works down through the tree. On receiving an invalidation message, a node
forwards it to its children in addition to invalidating its own copy. The overall effect is
that some invalidations occur in parallel. This can reduce the overall time taken to
invalidate a page – especially in an environment without hardware support for multicast.

18.3.5 Thrashing

It can be argued that it is the programmer’s responsibility to avoid thrashing. The
programmer could annotate data items in order to assist the DSM runtime in minimizing
page copying and ownership transfers. The latter approach is discussed in the next
section in the context of the Munin DSM system.

Mirage [Fleisch and Popek 1989] takes an approach to thrashing that is intended
to be transparent to programmers. Mirage associates each page with a small time
interval. Once a process has access to a page, it is allowed to retain access for the given
interval, which serves as a type of timeslice. Other requests for the page are held off in
the meantime. An obvious disadvantage of this scheme is that it is very difficult to
choose the length of the timeslice. If the system uses a statically chosen length of time,
it is liable to be inappropriate in many cases. A process might, for example, write a page
only once and thereafter not access it; nonetheless, other processes are prevented from
accessing it. Equally, the system might grant another process access to the page before
it has finished using it. 

A DSM system could choose the length of the timeslice dynamically. A possible
basis for this is observation of accesses to the page (using the memory management
unit’s referenced bits). Another factor that could be taken into account is the length of
the queue of processes waiting for the page.

18.4 Release consistency and Munin case study

The algorithms in the previous section were designed to achieve sequentially consistent
DSM. The advantage of sequential consistency is that DSM behaves in the way that
programmers expect shared memory to behave. Its disadvantage is that it is costly to
implement. DSM systems often require the use of multicasts in their implementations,
whether they are implemented using write-update or write-invalidation – although
unordered multicast suffices for invalidation. Locating the owner of a page tends to be
expensive: a central manager that knows the location of every page’s owner acts as a
bottleneck; following pointers involves more messages, on average. In addition,
invalidation-based algorithms may give rise to thrashing.

Release consistency was introduced with the Dash multiprocessor, which
implements DSM in hardware, primarily using a write-invalidation protocol [Lenoski et
al. 1992]. Munin and Treadmarks [Keleher et al. 1992] have adopted a software
implementation of it. Release consistency is weaker than sequential consistency and
cheaper to implement, but it has reasonable semantics that are tractable to programmers.

The idea of release consistency is to reduce DSM overheads by exploiting the fact
that programmers use synchronization objects such as semaphores, locks and barriers.
A DSM implementation can use knowledge of accesses to these objects to allow
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memory to become inconsistent at certain points, while the use of synchronization
objects nonetheless preserves application-level consistency.

18.4.1 Memory accesses

In order to understand release consistency – or any other memory model that takes
synchronization into account – we begin by categorizing memory accesses according to
their role, if any, in synchronization. Furthermore, we shall discuss how memory
accesses may be performed asynchronously to gain performance and give a simple
operational model of how memory accesses take effect. 

As we said above, DSM implementations on general-purpose distributed systems
may use message passing rather than shared variables to implement synchronization, for
reasons of efficiency. But it may help to bear shared-variable-based synchronization in
mind in the following discussion. The following pseudocode implements locks using the
testAndSet operation on variables. The function testAndSet sets the lock to 1 and returns
0 if it finds it zero; otherwise it returns 1. It does this atomically.

acquireLock(var int lock): // lock is passed by-reference
while (testAndSet(lock) = 1)

skip;
releaseLock(var int lock): // lock is passed by-reference

lock := 0;

Types of memory access ◊  The main distinction is between competing accesses and non-
competing (ordinary) accesses. Two accesses are competing if:

• they may occur concurrently (there is no enforced ordering between them) and

• at least one is a write.

So two read operations can never be competing; a read and a write to the same location
made by two processes that synchronize between the operations (and so order them) are
non-competing.

We further divide competing accesses into synchronization and non-
synchronization accesses:

• synchronization accesses are read or write operations that contribute to
synchronization;

• non-synchronization accesses are read or write operations that are concurrent but
that do not contribute to synchronization.

The write operation implied by ‘lock := 0’ in releaseLock (above) is a synchronization
access. So is the read operation implicit in testAndSet.

Synchronization accesses are competing, because potentially synchronizing
processes must be able to access synchronization variables concurrently and they must
update them: read operations alone could not achieve synchronization. But not all
competing accesses are synchronization accesses – there are classes of parallel
algorithms in which processes make competing accesses to shared variables just to
update and read one another’s results and not to synchronize.
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 Synchronization accesses are further divided into acquire accesses and release
accesses, corresponding to their role in potentially blocking the process making the
access, or in unblocking some other process.

Performing asynchronous operations ◊  As we saw when discussing implementations of
sequentially consistent DSM, memory operations may incur significant delays. Several
forms of asynchronous operation are available to increase the rate at which processes
execute, despite these delays. First, write operations may be implemented
asynchronously. A written value is buffered before being propagated and the effects of
the write are observed later by other processes. Second, DSM implementations may pre-
fetch values in anticipation of reading them, to avoid stalling a process at the time it
needs the values. Third, processors may perform instructions out of order. While
awaiting completion of the current memory access, they may issue the next instruction,
as long as it does not depend on the current instruction. 

In view of the asynchronous operation that we have outlined, we distinguish
between the point at which a read or write operation is issued – when the process first
commences execution of the operation – and the point when the instruction is performed
or completed. 

We shall assume that our DSM is at least coherent. As Section 18.2.3 explained,
this means that every process agrees on the order of write operations to the same
location. Given this assumption, we may speak unambiguously of the ordering of write
operations to a given location.

In a distributed shared memory system, we can draw a timeline for any memory
operation o that process P executes (see Figure 18.11). 

We say that a write operation  has performed with respect to a process P if
from that point P’s read operations will return v as written by that write operation, or the
value of some subsequent write to x (note that another operation may write the same
value v).

Similarly, we say that a read operation  has performed with respect to
process P when no subsequent write issued to the same location could possibly supply
the value v that P reads. For example, P may have pre-fetched the value it needs to read.

Finally, the operation o has performed if it has performed with respect to all
processes.

18.4.2 Release consistency

The requirements that we wish to meet are:

• to preserve the synchronization semantics of objects such as locks and barriers;

Figure 18.11 Timeline for performing a DSM read or write operation

P issues o

o performed with respect to P’ at time t

o performed (complete)

Real time

W x( )v

R x( )v
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• to gain performance, we allow a degree of asynchronicity for memory operations;

• to constrain the overlap between memory accesses in order to guarantee
executions that provide the equivalent of sequential consistency.

Release-consistent memory is designed to satisfy these requirements. Gharachorloo et
al. 1990 define release consistency as follows: 

RC1: before an ordinary read or write operation is allowed to perform with respect
to any other process, all previous acquire accesses must be performed.

RC2: before a release operation is allowed to perform with respect to any other
process, all previous ordinary read and write operations must be performed.

RC3: acquire and release operations are sequentially consistent with respect to one
another.

RC1 and RC2 guarantee that, when a release has taken place, no other process acquiring
a lock can read stale versions of data modified by the process that performs the release.
This is consistent with the programmer’s expectation that a release of a lock, for
example, signifies that a process has finished modifying data within a critical section.

The DSM runtime can only enforce the release consistency guarantee if it is aware
of synchronization accesses. In Munin, for example, the programmer is forced to use
Munin’s own acquireLock, releaseLock and waitAtBarrier primitives. (A barrier is a
synchronization object that blocks each of a set of processes until all have waited on it;
all processes then continue.) A program must use synchronization to ensure that updates
are made visible to other processes. Two processes that share DSM but never use
synchronization objects may never see one another’s updates if the implementation
strictly applies the sole guarantee given above.

Note that the release consistency model does allow an implementation to employ
some asynchronous operations. For example, a process need not be blocked when it
makes updates within a critical section. Nor do its updates have to be propagated until
it leaves the critical section by releasing a lock. Furthermore, updates can then be
collected and sent in a single message. Only the final update to each data item need be
sent.

Consider the processes in Figure 18.12, which acquire and release a lock in order
to access a pair of variables a and b (a and b are initialized to zero). Process 1 updates a
and b under conditions of mutual exclusion, so that process 2 cannot read a and b at the
same time and so will find a = b = 0 or a = b = 1. The critical sections enforce
consistency – equality of a and b – at the application level. It is redundant to propagate
updates to the variables affected during the critical section. If process 2 tried to access
a, say, outside a critical section, then it might find a stale value. That is a matter for the
application writer.

Let us assume that process 1 acquires the lock first. Process 2 will block and not
cause any activity related to DSM until it has acquired the lock and attempts to access a
and b. If the two processes were to execute on a sequentially consistent memory, then
process 1 would block when it updates a and b. Under a write-update protocol, it would
block while all versions of the data are updated; under a write-invalidation protocol, it
would block while all copies are invalidated.
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Under release consistency, process 1 will not block when it accesses a and b. The
DSM runtime system notes which data have been updated but need take no further
action at that time. It is only when process 1 has released the lock that communication
is required. Under a write-update protocol, the updates to a and b will be propagated;
under a write-invalidation protocol, the invalidations should be sent.

The programmer (or a compiler) is responsible for labelling read and write
operations as release, acquire or non-synchronization accesses – other instructions are
assumed to be ordinary. To label the program is to direct the DSM system to enforce the
release consistency conditions.

Gharachorloo et al. [1990] describe the concept of a properly labelled program.
They prove that such a program cannot distinguish between a release-consistent DSM
and a sequentially consistent DSM.

18.4.3 Munin

The Munin DSM design [Carter et al. 1991] attempts to improve the efficiency of DSM
by implementing the release consistency model. Furthermore, Munin allows
programmers to annotate their data items according to the way in which they are shared,
so that optimizations can be made in the update options selected for maintaining
consistency. It is implemented upon the V kernel [Cheriton and Zwaenepoel 1985],
which was one of the first kernels to allow user-level threads to handle page faults and
manipulate page tables.

The following points apply to Munin’s implementation of release consistency:

• Munin sends update or invalidation information as soon as a lock is released.

• The programmer can make annotations that associate a lock with particular data
items. In this case, the DSM runtime can propagate relevant updates in the same
message that transfers the lock to a waiting process – ensuring that the lock’s
recipient has copies of the data it needs before it accesses them. 

Keleher et al. [1992] describe an alternative to Munin’s eager approach of sending
update or invalidation information at the time of a release. Instead, this lazy

Figure 18.12 Processes executing on a release-consistent DSM

Process 1: 
acquireLock(); // enter critical section
a := a + 1;
b := b + 1;
releaseLock(); // leave critical section

Process 2: 
acquireLock(); // enter critical section
print ("The values of a and b are: ", a, b);
releaseLock(); // leave critical section
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implementation does so only when the lock in question is next acquired. Furthermore, it
sends this information only to the process acquiring the lock and piggy backs it onto the
message granting the lock. It is unnecessary to make the updates visible to other
processes until they in turn acquire the lock.

Sharing annotations ◊  Munin implements a variety of consistency protocols, which are
applied at the granularity of individual data items. The protocols are parameterized
according to the following options: 

• whether to use a write-update or write-invalidate protocol; 

• whether several replicas of a modifiable data item may exist simultaneously; 

• whether or not to delay updates or invalidations (for example, under release
consistency);

• whether the item has a fixed owner, to which all updates must be sent; 

• whether the same data item may be modified concurrently by several writers; 

• whether the data item is shared by a fixed set of processes;

• whether the data item may be modified. 

These options are chosen according to the nature of the data item and the pattern of its
sharing between processes. The programmer can make an explicit choice of which
parameter options to use for each data item. However, Munin supplies a small, standard
set of annotations for the programmer to apply to data items, each of which implies a
convenient choice of the parameters, suitable for a variety of applications and data
items. These are as follows:

Read-only:  No updates may be made after initialization and the item may be freely
copied.

Migratory:  Processes typically take turns in making several accesses to the item, at
least one of which is an update. For example, the item might be accessed within a
critical section. Munin always gives both read and write access together to such an
object, even when a process takes a read fault. This saves subsequent write-fault
processing.

Write-shared:  Several processes update the same data item (for example, an array)
concurrently, but this annotation is a declaration from the programmer that the
processes do not update the same parts of it. This means that Munin can avoid false
sharing but must propagate only those words in the data item that are actually updated
at each process. To do this, Munin makes a copy of a page (inside a write-fault
handler) just before it is updated locally. Only the differences between the two
versions are sent in an update.

Producer-consumer:  The data object is shared by a fixed set of processes, only one
of which updates it. As we explained when discussing thrashing above, a write-
update protocol is most suitable here. Moreover, updates may be delayed under the
model of release consistency, assuming that the processes use locks to synchronize
their accesses.
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Reduction:  The data item is always modified by being locked, read, updated and
unlocked. An example of this is a global minimum in a parallel computation, which
must be fetched and modified atomically if it is greater than the local minimum.
These items are stored at a fixed owner. Updates are sent to the owner, which
propagates them.

Result:  Several processes update different words within the data item; a single
process reads the whole item. For example, different ‘worker’ processes might fill in
different elements of an array, which is then processed by a ‘master’ process. The
point here is that the updates need only be propagated to the master and not to the
workers (as would occur under the ‘write-shared’ annotation just described).

Conventional:  The data item is managed under an invalidation protocol similar to
that described in the previous section. No process may therefore read a stale version
of the data item.

Carter et al. [1991] detail the parameter options used for each of the annotations we have
given. This set of annotations is not fixed. Others may be created as sharing patterns that
require different parameter options are encountered.

18.5 Other consistency models

Models of memory consistency can be divided into uniform models, which do not
distinguish between types of memory access, and hybrid models, which do distinguish
between ordinary and synchronization accesses (as well as other types of access). 

Several uniform models exist that are weaker than sequential consistency. We
introduced coherence in Section 18.2.3, in which the memory is sequentially consistent
on a location-by-location basis. Processors agree on the order of all writes to a given
location, but they may differ on the order of writes from different processors to different
locations [Goodman 1989, Gharachorloo et al. 1990]. 

Other uniform consistency models include:

Causal consistency:  Reads and writes may be related by the happened-before
relationship (see Chapter 11). This is defined to hold between memory operations
when either (a) they are made by the same process; (b) a process reads a value written
by another process; or (c) there exists a sequence of such operations linking the two
operations. The model’s constraint is that the value returned by a read must be
consistent with the happened-before relationship. This is described by Hutto and
Ahamad [1990].

Processor consistency:  The memory is both coherent and adheres to the pipelined
RAM model (see below). The simplest way to think of processor consistency is that
the memory is coherent and that all processes agree on the ordering of any two write
accesses made by the same process – that is, they agree with its program order. This
was first defined informally by Goodman [1989] and later formally defined by
Gharachorloo et al. [1990] and Ahamad et al. [1992]. 

Pipelined RAM:  All processors agree on the order of writes issued by any given
processor [Lipton and Sandberg 1988].
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In addition to release consistency, hybrid models include:

Entry consistency:  Entry consistency was proposed for the Midway DSM system
[Bershad et al. 1993]. In this model, every shared variable is bound to a
synchronization object such as a lock, which governs access to that variable. Any
process that first acquires the lock is guaranteed to read the latest value of the
variable. A process wishing to write the variable must first obtain the corresponding
lock in ‘exclusive’ mode – making it the only process able to access the variable.
Several processes may read the variable concurrently by holding the lock in non-
exclusive mode. Midway avoids the tendency to false sharing in release consistency,
but at the expense of increased programming complexity.

Scope consistency:  This memory model [Iftode et al. 1996] attempts to simplify the
programming model of entry consistency. In scope consistency, variables are
associated with synchronization objects largely automatically instead of relying on
the programmer to associate locks with variables explicitly. For example, the system
can monitor which variables are updated in a critical section.

Weak consistency:  Weak consistency [Dubois et al. 1988] does not distinguish
between acquire and release synchronization accesses. One of its guarantees is that
all previous ordinary accesses complete before either type of synchronization access
completes.

Discussion ◊  Release consistency and some of the other consistency models weaker
than sequential consistency appear to be the most promising for DSM. It does not seem
to be a significant disadvantage of the release consistency model that synchronization
operations need to be known to the DSM runtime – as long as those supplied by the
system are sufficiently powerful to meet the needs of programmers. 

It is important to realize that, under the hybrid models, most programmers are not
forced to consider the particular memory consistency semantics used as long as they
synchronize their data accesses appropriately. But there is a general danger in DSM
designs of asking the programmer to perform many annotations to his or her program in
order to make its execution efficient. This includes both annotations identifying data
items with synchronization objects and the sharing annotations such as those of Munin.
One of the advantages of shared-memory programming over message passing is
supposed to be its relative convenience.

18.6 Summary

This chapter has described and motivated the concept of distributed shared memory as
an abstraction of shared memory that is an alternative to message-based communication
in a distributed system. DSM is primarily intended for parallel processing and data
sharing. It has been shown to perform as well as message passing for certain parallel
applications, but it is difficult to implement efficiently, and its performance varies with
applications.
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The chapter has concentrated on software implementations of DSM – particularly
those using the virtual memory subsystem – but it has been implemented with hardware
support.

The main design and implementation issues are the DSM structure, the means by
which applications synchronize, the memory consistency model, the use of write-update
or write-invalidation protocols, the granularity of sharing, and thrashing. 

The DSM is structured either as a series of bytes, a collection of shared objects, or
a collection of immutable data items such as tuples. 

Applications using DSM require synchronization in order to meet application-
specific consistency constraints. They use objects such as locks for this purpose,
implemented using message passing for efficiency.

The most common strict type of memory consistency implemented in DSM
systems is sequential consistency. Because of its cost, weaker consistency models have
been developed, such as coherence and release consistency. Release consistency enables
the implementation to exploit the use of synchronization objects to achieve greater
efficiency without breaking application-level consistency constraints. Several other
consistency models were outlined, including entry, scope and weak consistency, which
all exploit synchronization.

Write-update protocols are those in which updates are propagated to all copies as
data items are updated. These are usually implemented in hardware, although software
implementations using totally ordered multicast exist. Write-invalidation protocols
prevent stale data being read by invalidating copies as data items are updated. These are
more suited to page-based DSM, for which write-update may be an expensive option.

The granularity of DSM affects the likelihood of contention between processes
that falsely share data items because they are contained in the same unit of sharing (for
example, page). It also affects the cost per byte of transferring updates between
computers.

Thrashing may occur when write-invalidation is used. This is the repeated transfer
of data between competing processes at the expense of application progress. This may
be reduced by application-level synchronization, by allowing computers to retain a page
for a minimum time, or by labelling data items so that both read and write access are
always granted together.

The chapter has described Ivy’s three main write-invalidate protocols for page-
based DSM, which address the problems of managing the copy set and locating the
owner of a page. These were the central manager protocol, in which a single process
stores the current owner’s address for each page; the protocol that uses multicast to
locate the current owner of a page; and the dynamic distributed manager protocol, which
uses forwarding pointers to locate the current owner of a page.

Munin is an example implementation of release consistency. It implements eager
release consistency in that it propagates update or invalidation messages as soon as a
lock is released. Alternative, lazy implementations exist, which propagate those
messages only when they are required. Munin allows programmers to annotate their data
items in order to select the protocol options that are best suited to them, given the way
in which they are shared.
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EXERCISES

18.1 Explain in which respects DSM is suitable or unsuitable for client-server systems.
page 750

18.2 Discuss whether message passing or DSM is preferable for fault-tolerant applications. 
page 751

18.3 How would you deal with the problem of differing data representations for a
middleware-based implementation of DSM on heterogeneous computers? How would
you tackle the problem in a page-based implementation? Does your solution extend to
pointers? page 753

18.4 Why should we want to implement page-based DSM largely at user-level, and what is
required to achieve this? page 754

18.5 How would you implement a semaphore using a tuple space? page 755

18.6 Is the memory underlying the following execution of two processes sequentially
consistent (assuming that, initially, all variables are set to zero)?

P1: R(x)1; R(x)2; W(y)1

P2: W(x)1; R(y)1; W(x)2 page 759

18.7 Using the R(), W() notation, give an example of an execution on a memory that is
coherent but not sequentially consistent. Can a memory be sequentially consistent but
not coherent? page 759

18.8 In write-update, show that sequential consistency could be broken if each update were
to be made locally before asynchronously multicasting it to other replica managers, even
though the multicast is totally ordered. Discuss whether an asynchronous multicast can
be used to achieve sequential consistency. (Hint: consider whether to block subsequent
operations.) page 760

18.9 Sequentially consistent memory can be implemented using a write-update protocol
employing a synchronous, totally ordered multicast. Discuss what multicast ordering
requirements would be necessary to implement coherent memory. page 760

18.10 Explain why, under a write-update protocol, care is needed to propagate only those
words within a data item that have been updated locally.

Devise an algorithm for representing the differences between a page and an updated
version of it. Discuss the performance of this algorithm. page 760

18.11 Explain why granularity is an important issue in DSM systems. Compare the issue of
granularity between object-oriented and byte-oriented DSM systems, bearing in mind
their implementations.

Why is granularity relevant to tuple spaces, which contain immutable data?

What is false sharing? Can it lead to incorrect executions? page 762

18.12 What are the implications of DSM for page replacement policies (that is, the choice of
which page to purge from main memory in order to bring a new page in)? page 763
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18.13 Prove that Ivy’s write-invalidate protocol guarantees sequential consistency. page 765

18.14 In Ivy’s dynamic distributed manager algorithm, what steps are taken to minimize the
number of lookups necessary to find a page? page 768

18.15 Why is thrashing an important issue in DSM systems and what methods are available
for dealing with it? page 771

18.16 Discuss how condition RC2 for release consistency could be relaxed. Hence distinguish
between eager and lazy release consistency. page 774

18.17 A sensor process writes the current temperature into a variable t stored in a release-
consistent DSM. Periodically, a monitor process reads t. Explain the need for
synchronization to propagate the updates to t, even though none is otherwise needed at
the application level. Which of these processes needs to perform synchronization
operations? page 773

18.18 Show that the following history is not causally consistent:

P1: W(a)0; W(a)1

P2: R(a)1; W(b)2

P3: R(b)2; R(a)0 page 777

18.19 What advantage can a DSM implementation obtain from knowing the association
between data items and synchronization objects? What is the disadvantage of making
the association explicit? page 778
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